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2 Laboratoire de Physique de la Matière Condenséeb, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

and
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Abstract. The weak coupling instabilities of a two dimensional Fermi system are investigated for the case
of a square lattice using a Wilson renormalization group scheme to one loop order. We focus on a situation
where the Fermi surface passes through two saddle points of the single particle dispersion. In the case of
perfect nesting, the dominant instability is a spin density wave but d-wave superconductivity as well as
charge or spin flux phases are also obtained in certain regions in the space of coupling parameters. The
low energy regime in the vicinity of these instabilities can be studied analytically. Although saddle points
play a major role (through their large contribution to the single particle density of states), the presence
of low energy excitations along the Fermi surface rather than at isolated points is crucial and leads to an
asymptotic decoupling of the various instabilities. This suggests a more mean-field like picture of these
instabilities, than the one recently established by numerical studies using discretized Fermi surfaces.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.Hf Non-Fermi-liquid ground states,
electron phase diagrams and phase transitions in model systems – 74.72.-h High-Tc compounds

1 Introduction

Most of the unusual properties of the superconduct-
ing cuprates are likely to be linked to the quasi-two-
dimensional nature of their electronic structure close to
the Fermi energy. Therefore certain (single-band) two-
dimensional (2D) models of interacting electrons may be
able, in principle, to account for at least part of the anoma-
lies observed in these compounds [1–3]. Unfortunately,
even very simple models, such as the 2D Hubbard or the
2D t − J model, have so far resisted a rigorous analysis.
Moreover, the available numerical studies are not yet con-
clusive enough for making definite predictions for, e.g., the
zero-temperature phase diagram of these many-electron
systems.

One of the major difficulties is that in the cuprates
the bare couplings between electrons, for instance the pa-
rameter U of the Hubbard model, are large, i.e. of the
order of the bandwidth. Therefore it is not clear whether
a ground state consisting of occupied Bloch orbitals with
energies below εF is a good starting point or whether one
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has rather to think in terms of configurations of singly oc-
cupied and empty sites (doped Mott insulator). Actually,
the successful analysis of the insulating phase in terms
of the Heisenberg model suggests that the Mott insulator
is the appropriate reference state [4]. Another difficulty is
that fluctuations (both thermal and quantum) are strong
in two dimensions so that mean-field approximations can-
not be trusted.

In this paper we deliberately choose the limit of weak
bare couplings, keeping in mind that this parameter range
may miss completely some important characteristic as-
pects of the region of strong bare interactions. Neverthe-
less, it cannot be excluded that certain properties are
qualitatively the same over the whole range of (bare)
couplings, as is the case for the 1D Hubbard model, a
Luttinger liquid for all positive values of U and all densi-
ties except n = 1 [5,6].

The most clear picture of two-dimensional interacting
electrons has been obtained for the 2D jellium model with
its circular Fermi surface, using a Wilsonian renormal-
ization group (RG) approach [7–9]. A series of rigorous
studies has shown that the Landau Fermi liquid theory is
stable at not too low temperatures [10,11], i.e., above the
critical temperature for Kohn-Luttinger superconductiv-
ity [12]. Other instabilities do not occur.
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Electrons hopping between the sites of a square lat-
tice yield a spectrum that differs in two respects from the
parabolic spectrum of the jellium model. First, the spec-
trum exhibits extrema and saddle points in the Brillouin
zone. General considerations imply that there are at least
two saddle points and two extrema (one maximum and one
minimum). Obvious points are P0 = (0, 0) and Q = (π, π)
for the extrema and P1 = (π, 0) and P2 = (0, π) for the
two saddle points, but more complicated patterns are also
possible. The density of states has a logarithmic van Hove
singularity at the saddle points, in strong contrast to the
constant density of states of the parabolic spectrum of the
jellium model. The second difference is the curvature of
the lines of constant energy. These are circles in the case
of the jellium model, whereas in the case of the square
lattice one can easily find portions with almost vanishing
curvature. In fact, for the tight-binding model (with hop-
ping restricted to nearest neighbor sites) the Fermi surface
for the half-filled band is a perfect square.

RG calculations for a model where the Fermi surface
contains flat portions have been performed by various au-
thors [13–16]. They agree in that a d-wave superconduct-
ing instability occurs for repulsive interactions, due to the
coupling of particle-particle and particle-hole correlations.

Our main emphasis is on the effect of van Hove singu-
larities. We will consider in particular the case where the
Fermi surface passes through saddle points (“van Hove
filling”). Early scaling approaches to this problem [17–19]
focussed on the interactions between electrons at the sad-
dle points, by treating these points in analogy to the two
Fermi points of the one-dimensional electron gas [20]. In
this work we show that, indeed, the logarithmically dom-
inant RG flow at low energies is controlled by the neigh-
borhood of the van Hove points. However, in contrast to
the one-dimensional case where the scattering processes
can be characterized in terms of a few coupling constants
connecting the two Fermi points, in two dimensions the
effective couplings are functions of incoming and outgo-
ing momenta, even if these are restricted to the Fermi
surface. We find that this functional dependence plays a
crucial role in the asymptotic decoupling of competing in-
stabilities. A step in this direction has already been made
in the parquet approach of reference [21].

When the Fermi level is at a van Hove singularity the
system is not renormalizable in the traditional sense of
field theory. Nevertheless, electrons near a van Hove sin-
gularity have been treated by applying the field theory
formalism to the particle-hole sector [22]. No mixture with
particle-particle diagrams can be treated within this for-
malism. The Wilsonian RG used here does not assume
renormalizability and may be applied without constraints.

A numerical scheme for calculating the complete flow
from the bare action of an arbitrary microscopic model to
the low-energy effective action as a function of a contin-
uously decreasing energy cutoff Λ has been presented by
Zanchi and Schulz [23]. Unfortunately, in order to carry
out the RG calculations it appears to be necessary to re-
sort to a number of approximations, which are justified
only at the final stage of the RG flow, where Λ is much

smaller than the bandwidth. Nevertheless, the application
of this method to the Hubbard model near half filling does
provide an appealing picture, namely a transition from an
antiferromagnetically ordered ground state at half filling
to a d-wave superconductor upon doping [23]. This result
has been confirmed by Halboth and Metzner using a sim-
ilar approach [24]. Recently, numerical RG calculations
have brought up two additional phases, one with a de-
formed Fermi surface (Pomeranchuk instability) [25] and
one with suppressed uniform spin and charge susceptibili-
ties (“insulating spin liquid”) [26]. In all these calculations
the proximity of van Hove singularities plays an important
role, together with approximate nesting.

Our analytical approach is complementary to these nu-
merical RG calculations. We start from the same equations
and analyze the flow in the limit of small Λ. We focus on
the system at the van Hove filling, where we take only the
leading order in Λ into account. The asymptotic regime
of small Λ can only be reached, if the initial coupling is
sufficiently small. In this sense our approach is limited as
compared to the numerical studies. On the other hand,
the numerical methods suffer from the need to replace the
continuous Fermi surface by a discrete set of points.

In our approach – as well as in previous RG calcula-
tions carried out to one loop order – self-energy effects
are neglected. While this can be easily justified for the
jellium model, the argument is more subtle in the case
of lattice fermions. In fact, the second-order contribution
to the self-energy is infrared divergent in the case of the
half-filled nearest-neighbor tight-binding band. Neverthe-
less, we find that also in this case self-energy effects are
of subleading order in Λ, provided that an instability (su-
perconducting or density wave) occurs.

The analysis of the dominant parts of the RG equa-
tions is sufficient for establishing a rich phase diagram
for the nearest-neighbor tight-binding band with a nested
Fermi surface, whereas in the non-nested case subleading
contributions are crucial. We also point out the difficulties
of including consistently those subleading terms.

The paper is organized as follows. In Section 2 we de-
fine the effective interaction for a general model of in-
teracting electrons in two dimensions and show how to
relate it to correlation functions. An exact RG equation
and its one loop approximation is presented in Section 3
both for the effective coupling function and for general-
ized susceptibilities. The close connection between this
approximation and parquet diagrams is also briefly dis-
cussed. In Section 4, we analyze the one loop equations in
the limit of small energies. First, we review the situation
of a parabolic electron dispersion with a circular Fermi
surface where we recover the standard result of a dom-
inant flow in the BCS channel. Then a Fermi surface is
considered which passes through van Hove points without
being nested. For attractive interaction superconductivity
again dominates, whereas it appears to be difficult to keep
track consistently of all leading order terms for repulsive
interaction. The case of a half filled nearest-neighbor tight-
binding band is discussed in the remaining Sections 5–7.
In Section 5, the renormalized couplings are classified
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according to both the location of momenta with respect
to the van Hove points and the channels characterizing
the different instabilities. It is argued that to leading or-
der there is no mixing between superconducting, charge
and spin instabilities except from momenta very close to
the van Hove points. A simple way of disentangling this
special behavior at the van Hove points and the generic be-
havior elsewhere is presented in Section 6 and contrasted
to an earlier approach where the momentum dependence
was altogether neglected. The asymptotic behavior of the
RG flow allows to draw a phase diagram including super-
conductivity, density waves and flux phases, depending
on the values of the bare couplings. This phase diagram
agrees with symmetry considerations linking the various
order parameters, as shown in Section 7. A brief summary
is presented in Section 8.

2 Effective interaction

We consider a system of interacting electrons on a two-
dimensional square lattice. The single particle states are
labeled by a lattice momentum k, which is defined only
modulo a reciprocal lattice vector, and a spin index
σ =↑, ↓. In the functional integral formalism the sys-
tem is described in terms of Grassmann fields ψσk, where
k = (k0,k) is a 2 + 1-dimensional variable, which includes
the Matsubara frequency k0 [27]. The Fourier transform
is defined as

ψσk = (βV )−1/2

∫ β

0

dτ eik0τ
∑

r

e−ik·rψσr(τ),

where β is the inverse temperature and V the volume of
the system. In the calculations we will take the limit β,
V →∞. The action is of the form

S[ψ] =
∑
σ,k

ψ̄σk(ik0 − ξk)ψσk −W [ψ], (1)

where ξk = ek − µ is the single particle energy relative to
the chemical potential. The free electron propagator is

C(k) =
1

ik0 − ξk
· (2)

W [ψ] can be a general short ranged two-body interaction,
with a coupling function g(k1, k2, k3, k4),

W [ψ] =
1
2

1
βV

∑
k1···k4

δk1+k2,k3+k4

×g(k1, k2, k3, k4)
∑
σ,σ′

ψ̄σk1 ψ̄σ′k2ψσ′k3ψσk4 . (3)

Note that although we write formally δk1+k2,k3+k4 , the
momenta are only conserved modulo a reciprocal lattice
vector.

The function g should satisfy all the point sym-
metries of the square lattice. In addition, we require

permutation symmetry g(k1, k2, k3, k4) = g(k2, k1, k4, k3).
Finally, from time reversal symmetry and the be-
havior under complex conjugation one finds [24]
g(k1, k2, k3, k4) = g(k4, k3, k2, k1) = ḡ(k̄1, k̄2, k̄3, k̄4),
where k̄ = (−k0,k) and ḡ is the complex conjugate of g.

There is no symmetry with respect to the operation
Xg(k1, k2, k3, k4) := g(k1, k2, k4, k3) which exchanges only
two of its arguments, but g can be separated into a sym-
metric part gS = 1

2 (1 + X)g and an antisymmetric part
gT = 1

2 (1 − X)g. These couplings describe scattering of
singlet and triplet pairs, as becomes clear if we write the
interaction as

W [ψ] =
1
2

1
βV

∑
k1···k4

δk1+k2,k3+k4

×
{
gS(k1, k2, k3, k4)φ̄S(k2, k1)φS(k3, k4)

+gT (k1, k2, k3, k4)

×
∑

α=0,±1

φ̄α(k2, k1)φα(k3, k4)
}
, (4)

with

φS(k, k′) =
1√
2

(ψk↑ψk′↓ − ψk↓ψk′↑) , (5)

φ0(k, k′) =
1√
2

(ψk↑ψk′↓ + ψk↓ψk′↑) ,

φ1(k, k′) = ψk↑ψk′↑, φ−1(k, k′) = ψk↓ψk′↓.

The system is completely described by the partition
function with source term

Z[η] =
∫

dµC[ψ] e−W [ψ]+(η̄,ψ)+(ψ̄,η), (6)

where we used the short-hand notation (χ̄, ψ) :=∑
σk χ̄σkψσk and the normalized Gaussian measure is de-

fined by

dµC [ψ] :=
∏
σk dψσkdψ̄σk e(ψ̄,C−1ψ)∫ ∏
σk dψσkdψ̄σk e(ψ̄,C−1ψ)

· (7)

In particular, all connected correlation functions are ob-
tained as functional derivatives [27]

〈ψ1 · · ·ψnψ̄n+1 · · · ψ̄2n〉c =
δ2n logZ[η]

δη2n · · · δηn+1δη̄n · · · δη̄1

∣∣∣∣
η=0

,

(8)
where we have written ψi instead of ψkiσi .

The propagator (2) is singular on the manifold k0 =
ξk = 0 called the Fermi surface. The infinities encoun-
tered in a naive perturbative treatment of the action (1)
are avoided in the RG procedure which endows the bare
propagator with an infrared cutoff Λ,

CΛ(k) = Θ(|ξk| − Λ)C(k), (9)

where Θ is the Heavyside step function. The quantity
that separates high- from low-energy degrees of freedom is
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therefore |ξk|. Although a more canonical choice would be√
k2

0 + ξ2(p), we have chosen the frequency-independent
cutoff in order to simplify the calculations.

One can now define the effective interaction

WΛ[χ] = − log
∫

dµCΛ [ψ]e−W [ψ+χ] (10)

which depends on a Grassmann field χ. Note that the in-
tegration with respect to dµCΛ [ψ] is perfectly defined, al-
though C−1

Λ is not. This can be seen most easily in the ex-
pansion ofWΛ[χ] in terms of Feynman diagrams. The eval-
uation of these diagrams involves only CΛ and never C−1

Λ .
Whenever C−1

Λ appears in an intermediate step of a calcu-
lation (see below), it may be regularized by replacing the
zero in the Heavyside function by an infinitesimal number.
WΛ has a twofold interpretation. On the one hand, we

can restrict the field to the low energy degrees of freedom
ψ<kσ = Θ(Λ− |ξk|)ψkσ. The object

Seff
Λ [ψ<] = (ψ̄<, C−1ψ<)−WΛ[ψ<] (11)

corresponds then to Wilson’s effective action, which de-
scribes the system in terms of ψ< only.

On the other hand,WΛ is the generating functional of
amputated connected correlation functions with infrared
cutoff Λ because of the identity [28]

logZΛ[η] = −(η̄, CΛη)−WΛ[CΛη], (12)

where ZΛ is given by (6), with C replaced by CΛ. In partic-
ular, the quadratic part ofWΛ is related to the self-energy
ΣΛ by

δ2

δχσkδχ̄σk
WΛ[χ]

∣∣∣∣
χ=0

= −C−1
Λ (k)− 〈ψσkψ̄σk〉Λ C−2

Λ (k)

(13)

=
ΣΛ(k)

1− CΛ(k)ΣΛ(k)
, (14)

where we have used the following identity for the full
electron propagator GΛ(k) = −〈ψσkψ̄σk〉Λ = CΛ(k)(1 −
CΛ(k)ΣΛ(k))−1. Therefore in the case |ξk| < Λ the right-
hand side of equation (14) simply becomes ΣΛ(k).

Similarly the quartic part of WΛ is re-
lated to the one particle irreducible ver-
tex ΓΛ, defined by 〈ψσk1ψσ′k2 ψ̄σ′k3 ψ̄σk4〉c,Λ =
(βV )−1Γ σσ

′

Λ (k1, . . . , k4)
∏4
i=1 GΛ(ki). In fact, differ-

entiating equation (12) we find

δ4WΛ[χ]
δχσk4δχσ′k3δχ̄σ′k2δχ̄σk1

∣∣∣∣
χ=0

=

−〈ψσk1ψσ′k2 ψ̄σ′k3 ψ̄σk4〉c,Λ
4∏
i=1

C−1
Λ (ki) (15)

= − Γ σσ
′

Λ (k1, . . . , k4)
βV
∏4
i=1[1− CΛ(ki)ΣΛ(ki)]

· (16)

The quartic part ofWΛ is of the same form as (3) with
an effective coupling function gΛ(k1, . . . , k4). For |ξki | < Λ
we find therefore

Γ σσ
′

Λ (k1, . . . , k4)=−δk1+k2,k3+k4(1−δσσ′X)gΛ(k1, . . . , k4).
(17)

gΛ is equal to a connected amputated correlation function
if all |ξki | > Λ and a one particle irreducible vertex in the
opposite case. gΛ is therefore not continuous at |ξki | = Λ.
A formal and non-perturbative proof of these relations
was given by Morris [29] for a bosonic field theory but the
generalization to fermions is straightforward. He has also
shown that ΣΛ and ΓΛ are continuous at |ξki | = Λ, in
contrast to gΛ.

3 RG equations

3.1 RG flow of the effective interaction

The effective interaction satisfies the following exact RG
equation [10,28]

d
dΛ
WΛ[χ] =

∑
σ,k

dCΛ
dΛ

(k)
δ2WΛ[χ]
δχσkδχ̄σk

−
∑
σ,k

dCΛ
dΛ

(k)
δWΛ[χ]
δχσk

δWΛ[χ]
δχ̄σk

· (18)

The derivative in d
dΛCΛ restricts the propagator to an

infinitesimal energy shell (Λ,Λ + dΛ) and equation (18)
therefore describes the effect of integrating out the modes
of that energy shell. This equation was first derived by
Polchinski in the context of a scalar field theory [30].

The strategy is now to start with the bare interac-
tion (3) at a cutoff Λ0 and to use some truncation of equa-
tion (18) in order to compute approximately the effective
action in the limit Λ→ 0. We will follow here Zanchi and
Schulz [23] who proposed to develop WΛ up to order six
in the fermionic variables and to neglect terms of higher
order.

We will only follow the flow of the effective cou-
pling function and neglect self energy corrections (i.e. the
quadratic part of WΛ). Self energy corrections to the sin-
gle particle Green’s function have three main effects. First
they change the shape and location of the Fermi surface,
second they modify the properties of the single particle
dispersion (the Fermi velocity) and third they lead to a
reduction of the quasi particle weight. It has to be checked
from case to case whether such corrections can be safely
neglected or not (see Sects. 4.1, 4.2 and 5).

Terms of order six are not present in the original inter-
action but they are produced by the RG flow. Their effect
is then to renormalize the effective coupling function gΛ.
The result is a closed one-loop equation for the coupling
function gΛ(k1, . . . , k4) [23] where |ξki | < Λ. It reads

d
dΛ

gΛ(k1, . . . , k4) = PP + PH1 + PH2 (19)
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PP: PH1:

kk11

kk22

kk33

kk44

kk11 kk22

kk33kk44

PH2: ++ ++

kk11

kk22

kk44

kk33kk33

kk11 kk22

kk44

kk11

kk22

kk33
kk44

Fig. 1. Diagrams contributing to the renormalization of the coupling function gΛ(k1, . . . , k4).

PP = − 1
βV

∑
p

d [CΛ(p)CΛ(q0)]
dΛ

×gΛ̃0
(k1, k2, q0, p)gΛ̃0

(p, q0, k3, k4),

PH1 = − 1
βV

∑
p

d [CΛ(p)CΛ(q1)]
dΛ

×gΛ̃1
(k1, q1, k3, p)gΛ̃1

(p, k2, q1, k4),

PH2 = − 1
βV

∑
p

d [CΛ(p)CΛ(q2)]
dΛ

×
[
−2gΛ̃2

(k1, p, q2, k4)gΛ̃2
(q2, k2, k3, p)

+gΛ̃2
(k1, p, k4, q2)gΛ̃2

(q2, k2, k3, p)

+gΛ̃2
(k1, p, q2, k4)gΛ̃2

(q2, k2, p, k3)
]
,

where q0 = k1 + k2 − p, q1 = p+ k3 − k1, q2 = p+ k3 − k2

and Λ̃i = Max{|ξp|, |ξqi |}.
Note that unlike equation (18) which is valid for any

choice of cutoff function CΛ, this truncated equation as-
sumes a sharp cutoff as in equation (9). Its representation
in terms of Feynman diagrams is shown in Figure 1.

One of the two internal lines stands for a propa-
gator CΛ and the other for its derivative d

dΛCΛ. This
amounts to a loop integration over an energy shell Λ ≤
|ξp| ≤ Λ + dΛ with the restriction that the second prop-
agator is in the high energy regime |ξq| ≥ Λ. The wavy
lines in the diagrams represent effective couplings gΛ̃ of
an earlier stage of the RG flow, when the energy shell Λ̃
was integrated out.

Equation (19) is not local in the variable Λ. Since
this is not very convenient, it was proposed [24] to de-
velop equation (18) into Wick ordered polynomials of the
fermionic variables instead of monomials as it was done
above. Wick ordering with respect to the low energy prop-
agatorDΛ = C−CΛ results in the same one-loop equation
as above but now all the couplings are evaluated at the
actual RG variable Λ and −d [CΛ(p)CΛ(q)] /dΛ has to be
replaced by d [DΛ(p)DΛ(q)] /dΛ, i.e., the energy of the
second propagator is now restricted to be smaller than Λ.

Recently a third scheme was established [26] where the
equation is local in Λ and the second propagator is still in
the high energy sector. It is obtained by considering the
generating functional of the one particle irreducible vertex
functions rather than the effective interaction defined by
equation (10), an idea originally due to Wetterich [31].

3.2 Order parameters and generalized susceptibilities

The RG formalism can be used to calculate the linear re-
sponse to an external field [23,24]. We focus on the promi-
nent instabilities of the half-filled nearest-neighbor tight-
binding band by adding the term

W ′[h, ψ] = −h̄
∫ β

0

dτ O(τ) − h
∫ β

0

dτ Ō(τ), (20)

to the action, where h is the external field h ∈ C and O
is a characteristic order parameter.

As a first example we consider superconductivity, de-
scribed by the order parameter O =

∑
k f(k)ψ↑kψ↓−k

with a form factor f(k) depending on the symmetry cho-
sen (s-wave, d-wave, etc.). The effective interaction, de-
fined by equation (10) with W replaced by W + W ′, is
now

WΛ[h, ψ] = WΛ[ψ]|h=0 −
(
h̄
∑
k

RΛ(k)ψ↑kψ↓−k + h.c.

)
−χΛ βV |h|2 (21)

plus terms of higher order in h and ψ. The coeffi-
cients RΛ(k) and χΛ are actually defined by equation (21).
Their initial values are RΛ0(k) = f(k) and χΛ0 = 0. The
susceptibility χΛ gives the linear response with respect to
the perturbation (20) of the system with an infrared cutoff
Λ. Using equation (21) and the definition (10) we get

χΛ = − 1
βV

∂2WΛ[h, ψ]
∂h∂h̄

∣∣∣∣
h,ψ=0

=
1
V

∂〈O〉Λ
∂h

∣∣∣∣
h=0

. (22)

χΛ is therefore interpreted as a susceptibility at tempera-
ture T = Λ [23]. In fact, in finite temperature perturbation
theory the temperature acts like an infrared cutoff.
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Fig. 2. The pattern of charge (spin) currents along the bonds
of the square lattice in a charge (spin) flux phase.

One can now derive one loop RG equations for RΛ(k)
and χΛ following the same procedure as for the effective
coupling function gΛ. We find

d
dΛ

χΛ =
1
βV

∑
k

d
dΛ

[CΛ(k)CΛ(−k)] |RΛ(k)|2,

d
dΛ

RΛ(k) =− 1
βV

∑
p

d
dΛ

[CΛ(p)CΛ(−p)] gBCS
Λ (k, p)RΛ(p),

(23)

where the BCS coupling function gBCS
Λ (k, k′) :=

gΛ(k,−k,−k′, k′) describes the scattering of Cooper pairs
with zero total momentum. Note that the function RΛ(k)
has the same symmetry properties (s-wave, d-wave etc.)
with respect to the lattice point group as the initial form
factor f(k).

At half filling, instabilities related to the nesting vector
Q = (π, π) are also natural candidates. They are described
by the order parameter

O =
∑
k,σ

fσ(k) ψ̄σk+Q ψσk =
∑

r,r′,σ

eir·Q f̃σ(r− r′) ψ̄σrψσr′ ,

(24)
where f̃ is the Fourier transform of f . We assume that
fσ(k + Q) = f̄σ(k) so that O is Hermitian and h ∈ R.

The simple choices fσ(k) = 1 and fσ(k) = σ yield,
respectively, charge and spin density waves. If fσ(k) is
a function with dx2−y2-symmetry and is even (odd) in
the spin index, then the nearest-neighbor-terms in equa-
tion (24) yield circular charge (spin) currents flowing
around the plaquettes of the square lattice with alternat-
ing directions (see Fig. 2). These four charge and spin
instabilities have been discussed a long time ago in the
context of the excitonic insulator [32].

We call the phase with circulating charge currents the
charge flux phase (CF) [33], it is sometimes also called
d-density wave, charge current wave or orbital antiferro-
magnetism. The charge flux phase (CF), closely related
to the concept of the chiral spin liquid [34], still plays a
prominent role in the strong coupling SU(2) theory of the
t− J model [35]. Recently it was proposed to be the com-
peting order parameter to d-wave superconductivity and
responsible for the pseudo gap phase of the cuprates [36].

The phase with circulating spin currents is called the
spin flux phase (SF). Other names encountered in the lit-
erature are “spin current wave” or “spin nematic state”
(because it is a state with broken rotational symmetry and
unbroken time reversal symmetry). The low-temperature
thermodynamics of both the charge and spin flux phases
have been investigated within a mean field theory in ref-
erence [37].

The effective interaction in the presence of such a per-
turbation is of the form

WΛ(h)[ψ] =WΛ(0)[ψ]− 2h
∑
k,σ

RσΛ(k)ψ̄σk+Q ψσk

−χΛ βV h2 + . . . , (25)

where Q := (0,Q) = (0, π, π). The one loop equations in-
volve the scattering processes gd(k, k′) := Xgx(k, k′) :=
g(k, k′+Q, k′, k+Q) with a direct or exchanged momen-
tum transfer of Q. They read

d
dΛ

χΛ = −2
1
βV

∑
p,σ

d
dΛ

[CΛ(p)CΛ(p+Q)] |RσΛ̃(p)|2,

d
dΛ

RσΛ(k) =
1
βV

∑
p

d
dΛ

[CΛ(p)CΛ(p+Q)] (26)

×
∑
σ′

{
gd
Λ̃

(k, p)− δσσ′gxΛ̃(k, p)
}
Rσ′Λ̃(p),

where Λ̃ = Max{|ξp|, |ξp+Q|}. One can decouple equa-
tion (26) into spin- and charge sectors by writing χ =
χc + χs and

d
dΛ

χc,s
Λ =− 1

βV

∑
k

d
dΛ

[CΛ(k)CΛ(k+Q)] |Rc,s

Λ̃
(k)|2, (27)

d
dΛ

Rc,s
Λ (k)=

1
βV

∑
p

d
dΛ

[CΛ(p)CΛ(p+Q)] gc,s

Λ̃
(k, p)Rc,s

Λ̃
(p),

where Rc,s := R↑ ±R↓, gc := 2gd − gx and gs = −gx.

3.3 Relation to parquet diagrams

Instead of calculating the effective interaction via the
Polchinski equation (18), one could try a naive pertur-
bative expansion (starting from Eq. (10)).

gΛ = gΛ0 +A1(Λ) g2
Λ0

+A2(Λ) g3
Λ0

+ . . .

The problem with this series is that the coefficients An(Λ)
diverge as Λ → 0. Their asymptotic behavior is given by
An(Λ) ∼ ln(Λ), where in general l(Λ) = | logΛ| except for
van Hove filling where l(Λ) = log2 Λ. If the bare interac-
tion gΛ0 is small but gΛ0 l(Λ) ∼ 1, it is a reasonable ap-
proximation to sum the whole series, treating every term
to leading logarithmic order in Λ. This amounts to sum-
ming the so-called parquet diagrams (see [38] for a detailed
description of this method).
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It is interesting to note that these diagrams are gen-
erated by successively integrating equation (19) and ex-
pressing the result in terms of the bare interaction gΛ0

1.
We conclude that solving equation (19) to leading order
in Λ is equivalent to a summation of the parquet diagrams
within logarithmic precision.

4 The RG flow in the asymptotic regime

The truncation schemes applied so far to equation (18)
are all of perturbative nature and only justified as long
as the effective couplings are weak. Nevertheless, equa-
tion (19) and also its variants are still too complicated
to be dealt with numerically or analytically. We therefore
search for a second small parameter, in addition to the
coupling strength.

A natural small parameter is the energy cutoff Λ at
the final stage of the RG flow, where the important con-
tributions come from momenta close to the Fermi sur-
face. At this final stage we approximate the coupling func-
tions gΛ(k1, . . . , k4) by their values on the Fermi surface,
i.e., the 2 + 1 dimensional momenta ki in gΛ(k1, . . . , k4)
are replaced by suitable projections on the Fermi surface
(ξk = k0 = 0). We therefore write gΛ(k1, . . . ,k4) instead
of gΛ(k1, . . . , k4), because the frequencies have been set to
zero. The geometrical constraint of locating all the four
momenta k1,k2,k3 and k4 = k1 + k2 − k3 close to the
Fermi surface often reduces the number of variables even
further, so that gΛ depends on two or at most three inde-
pendent (angular) variables instead of nine.

This restriction to the final stage of the RG flow of
the effective couplings implies that we cannot relate the
effective theory to the original microscopic Hamiltonian.
More importantly, we have to assume that no instability
occurred in the flow before we have reached the asymptotic
region.

In the following we identify the leading contributions
to equation (19) in the limit where these simplifications
are justified, i.e., in the asymptotic regime Λ → 0. The
external momenta are assumed to lie on the Fermi surface.

We first observe that the contributions to equation (19)
are of the form

− 1
βV

∑
p

d [CΛ(p)CΛ(k ∓ p)]
dΛ

gΛ̃(. . .)gΛ̃(. . .) (28)

where k = k1 + k2 in diagram PP, k = k3 − k1 in di-
agram PH1 and k = k3 − k2 in diagram PH2. The mi-
nus sign appears in the particle-particle (p-p) diagram PP
and the plus sign in the particle-hole (p-h) diagrams PH1
and PH2.

1 The structure of equation (19) introduces a constraint on
the energies of internal lines. For example, if a parquet diagram
is generated by insertion of a bubble B1 into a bubble B2, both
single particle energies of B1 have to be bigger than those of
B2. The different RG schemes [23,24,26] all generate the whole
series of parquet diagrams, but the constraints are different.

If we neglect for the moment the angular dependence
of two coupling functions we are left with an analysis of
the two bubbles,

Bpp,ph(Λ, k) = − 1
βV

∑
p

d [CΛ(p)CΛ(k ∓ p)]
dΛ

· (29)

We consider the thermodynamic limit and zero temper-
ature and therefore replace 1/βV

∑
k by

∫
d2+1k

(2π)2+1 in the
calculations. Taking explicitly the derivative with respect
to Λ and integrating over the frequency p0 (for k0 = 0) we
find

Bpp, ph(Λ,k) = ±2
∫

d2p

(2π)2
δ(|ξp| − Λ)

×Θ(|ξq| − Λ)Θ(±ξpξq)
Λ+ |ξq|

, (30)

where q = k∓ p.
Within the Wick ordered scheme [24], the first step

function in equation (30) is replaced by Θ(Λ− |ξq|), since
the second propagator in equation (28) is restricted to be
in the low energy part. We have verified that this alterna-
tive scheme would not change our final results.

4.1 Circular Fermi surface

In order to illustrate the approach we consider the example
of very low filling, where the single-electron spectrum is
approximately parabolic ξp = p2−1 (all energies are given
in units of the Fermi energy and all momenta in units
of kF). The energy shell consists of two circles with radius√

1± Λ.
In this case, self energy effects are not expected to

change the leading order result. On the one hand, the
shape of the Fermi surface is fixed by the rotational sym-
metry of the problem. On the other hand, perturbative
corrections to the Fermi velocity ∇pΣΛ(p) and the quasi
particle weight z = (1 + i∂p0ΣΛ(p))−1 are finite as Λ→ 0.

For general values of k one finds that both bub-
bles Bpp,ph(Λ,k) are proportional to logΛ. For the spe-
cial value |k| = 2 we find Bpp ∼ Bph ∼ Λ−1/2. The
strongest divergence comes from the p-p bubble at k = 0,
namely Bpp ∼ Λ−1. Correspondingly, the dominant con-
tribution in the asymptotic regime Λ → 0 comes from
the diagram PP. It renormalizes the coupling function
gBCS
Λ (k,k′) := gΛ(k,−k,−k′,k′) which is related to su-

perconductivity, as was shown in Section 3.2. The non-
locality in Λ of equation (19) is absent if only this diagram
is taken into account.

The first sub-leading contribution (∼Λ−1/2) concerns
scattering processes with momentum transfer 2kF. This
contribution is usually neglected. We therefore conclude,
in line with the more standard scaling analysis used in pre-
vious works [8], that the dominant flow renormalizes only
the BCS couplings through the particle-particle diagram.

It is worthwhile to discuss the behavior of the bubbles
for small but finite values of k. For the p-p bubble we find
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in the limit |k|, Λ� 1

Bpp(Λ,k)=
1

2π2
√
|k2−Λ2|

{
2 arctan

√
Λ−|k|
Λ+|k| if |k| < Λ,

log |k|+
√

k2−Λ2

Λ if |k| > Λ.
(31)

If we renormalize a coupling with a small total momen-
tum k = k1 + k2 the p-p contribution to its flow is inde-
pendent of k as long as Λ � |k|. In this case we replace
gΛ(k1, . . . , k4) by gBCS

Λ (k1,k4) even if the total momentum
is not exactly zero. This replacement is no longer justified
when Λ is of order |k|. The flow then depends strongly on k
and cannot be controlled. Nevertheless, there is no danger
because a few renormalization steps later, if Λ� |k|, the
flow is suppressed and the coupling under consideration
no longer contributes.

We can use the same type of analysis for the p-h bubble
with a small momentum transfer, which renormalizes cou-
plings that are close to the forward- or exchange scattering
gf
Λ(k,k′) := Xge

Λ(k,k′) := gΛ(k,k′,k′,k). We obtain

Bph(Λ,k) =

{
0 if |k| < Λ,

− 1
2π2|k| log |k|+

√
k2−Λ2

Λ if |k| > Λ.
(32)

It gives a big k-dependent contribution if k is of order Λ.
But this flow is again suppressed if Λ is further reduced.

The results presented above for the isotropic case
should remain valid as long as the Fermi surface is both
far away from van Hove singularities and not nested. Even
the presence of Umklapp scattering alone does not change
the result. If the Fermi surface is big enough, Umklapp
processes open up new scattering processes, but their con-
tribution to the flow is not of leading order [39]. They can
nevertheless influence the flow in an important way before
we enter the asymptotic regime [26]. But at this early state
of the RG flow, approximations to equation (19) cannot
be controlled by the small parameter Λ.

4.2 Generic Fermi surface at van Hove filling

We now consider the case where the Fermi surface passes
through a van Hove singularity. The generic situation oc-
curs for a band structure with saddle points at P1 =
(±π, 0) and P2 = (0,±π). To be specific, we consider the
dispersion relation of a generalized tight-binding model:
ξk = −2(coskx + cos ky) + 4t′(cos kx cos ky + 1). The unit
of energy is given by the hopping amplitude between near-
est neighbors and the unit of momenta is the inverse of the
lattice constant. A finite electron hopping 0 < t′ < 1/2 be-
tween next nearest neighbors has been included and the
chemical potential is fine-tuned such that the Fermi sur-
face contains the saddle points (see Fig. 3).

We identify again the dominant terms of order Λ−1 in
the RG equation (19) by analyzing the bubbles Bpp(Λ,k)
and Bph(Λ,k). Dominant terms of this order appear only
if k is close to 0 or close to (π, π).

We first study the behavior of the bubbles at small |k|.
It is instructive to focus on the contributions of a small

0

P2

P1

Fig. 3. The Fermi surface at van Hove filling: t′ = 0.3 (solid
line) and t′ = 0 (dashed line).

patch surrounding a saddle point, say the region

P1 =
{

p ;
√

1− 2t′ |px − π|+
√

1 + 2t′ |py| ≤ 2ρ
}
.

The parameter ρ is small enough so that ξp can be re-
placed by its limiting quadratic form close to P1. We
compute the restricted bubbles BP1

pp(Λ,k) and BP1
ph(Λ,k),

which are defined by equation (30), but restricting the
summation to p ∈ P1. The values of BP1

pp(Λ,k) and
BP1

ph(Λ,k) depend sensitively on ξP1+k. Both bubbles
are negligible if |ξP1+k| � Λ, but for |ξP1+k| � Λ
(and Λ,k2 � ρ2) we get

BP1
pp(Λ,k) =

1
(2π)2

√
1− 4t′2 Λ

log
4Λρ2

(Λ+ ρ k+)(Λ+ ρ k−)
(33)

and

BP1
ph(Λ,k) =

−1
(2π)2

√
1− 4t′2Λ

×
[
θ(ρ k+ − Λ)

ρ k+ − Λ
ρk+

+ θ(ρ k− − Λ)
ρ k− − Λ
ρk−

]
, (34)

where k± := |
√

1− 2t′ kx ±
√

1 + 2t′ ky|. Note that
k+ k− = |ξP1+k|.

There are several remarkable differences with respect
to the circular Fermi surface. First we observe that for
very small k, such that ρ k± � Λ, we have BP1

pp(Λ,k) ∼
Λ−1 log 4ρ2

Λ , i.e. the p-p bubble has a logarithm in addi-
tion to the Λ−1 behavior. This anomaly, due to the di-
verging density of states at the Fermi level, concerns only
the renormalization of the BCS couplings.

More striking is the behavior in the regime k+k− �
Λ � ρ k±. The p-h bubble, zero for sufficiently small |k|,
gives a non negligible contribution there. Thus for a given
small momentum transfer k, the p-h contributions (dia-
gram PH1 or PH2 of Fig. 1) are dominant over many RG
iterations, in contrast to the case of Section 4.1 without
van Hove singularities. The p-p diagram is very sensitive
with respect to both the size and the direction of the total
momentum k in this regime, i.e. over a sizeable range of
energy scales. We conclude that in a consistent treatment
of the RG equations to order Λ−1, the renormalization of
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the effective coupling function gΛ(k1, . . . ,k4) depends on
the exact values of its arguments. For example the above-
mentioned projection of the momenta onto the Fermi sur-
face cannot be justified in the vicinity of a van Hove point.

One way to reduce the complexity of the problem is to
keep only the terms of order Λ−1 log(1/Λ) and to neglect
all other contributions. This leading logarithmic contribu-
tion occurs only in the p-p bubble for |k| �

√
Λ. As a

consequence only the BCS coupling function gBCS
Λ (k,k′)

is renormalized within this approximation. The flow of
gBCS
Λ (k,k′) is similar to the one explained in detail in

the next section, but without competing charge and spin
instabilities. For k close to (π, π) and finite values of t′
the p-p and p-h bubbles behave like Λ−1 but not like
Λ−1 logΛ.

For repulsive interactions, where the BCS flow is to-
wards weak coupling, the approximation is clearly not suf-
ficient and a consistent treatment up to order Λ−1 is re-
quired. Solutions for this case proposed earlier have ne-
glected the sensitive dependence of g(k1, . . . ,k4) on its
arguments [19,40,41].

In contrast to the case of the circular Fermi surface,
self-energy corrections are not negligible in the present
situation. In fact, they are expected to change the shape
of the Fermi surface.

For the corrections to the single particle dispersion and
the quasi particle weight, one finds in second order per-
turbation theory (see for example Eq. (7) of [40])

∂p0ΣΛ(p) ∼ g2
Λ0

log2 Λ (35)

∇pΣΛ(p) ∼ g2
Λ0

log2 Λ · ∇pξp.

These corrections are negligible within our approximation,
as long as gΛ0 log2 Λ ∼ 1. An attractive coupling diverges
at this scale. In the case of repulsive interactions however
the RG flow can be followed to smaller energies such that
gΛ0 logΛ ∼ 1. At these energy scales, self energy correc-
tions have to be taken seriously. This would require to
include subleading terms, a task that cannot be fulfilled
consistently without going beyond the one-loop approxi-
mation.

Due to the additional logarithm in the p-p bubble the
theory is not renormalizable in the usual sense of field the-
ory, i.e. it is not possible to send the bare momentum cut-
off to infinity while keeping some physical correlation func-
tions finite (even after the introduction of counter-terms in
the microscopic Hamiltonian and of wave-function renor-
malization). Gonzalez et al. [22] proposed a field theoret-
ical RG scheme where the coupling constants for forward
and exchange scattering are renormalized only by the p-h
diagrams. In this approach the p-p channel is treated sep-
arately in connection with a renormalized chemical poten-
tial. It is however not clear from our Wilsonian approach
that the RG equations will not mix p-p and p-h diagrams,
if all contributions ∼ Λ−1 are taken into account.

gg dd(k,k’ ))

k’
kk

k’

kk

k’

kk

gg | | (k11,k22,k33))

kk11

kk33

kk11

kk22

kk33

kk11

kk22

kk33

kk22

gg ηη((kk,k’ ):

k’

kk

Fig. 4. Examples of processes from the different interaction
channels.

5 The square Fermi surface

In this and in the following sections we consider the
nearest-neighbor tight-binding model (t′ = 0) at half fill-
ing where the Fermi surface is a square (see Fig. 3). We
first identify the possible scattering processes which con-
nect four momenta on the Fermi surface and satisfy mo-
mentum conservation modulo a reciprocal lattice vector.
To simplify notation we omit the subscript Λ in gΛ. In
addition to the usual forward, exchange and BCS scatter-
ing, there are the two kinds of processes related to direct
or exchanged transfer of the nesting vector Q = (π, π):
gd(k,k′) := Xgx(k,k′) = g(k,k′+ Q,k′,k+ Q). Further-
more if three points k1,k2,k3 are chosen freely on two
parallel sides of the square, the resulting k4 = k1 +k2−k3

lies automatically on the Fermi surface, giving rise to
a three-parameter family g‖(k1,k2,k3). Finally, there is
scattering of pairs with a total momentum Q, described
by gη(k,k′) := g(k,Q−k,Q−k′,k′). Some examples are
shown in Figure 4.

This list of the possible low energy processes is com-
plete but the classification into gf , ge, gBCS, gd, gx, gη
and g‖ is not unique. For example if k and k′ belong
to the same pair of parallel sides of the square, the two-
parameter families gf , ge, gBCS, gd, gx and gη belong to
the larger three parameter family g‖. Furthermore, two
two-parameter families intersect in a one-parameter fam-
ily as gBCS(k,k + Q) = gd(k,Q − k), gBCS(k,Q − k) =
gx(k,Q−k), etc. Finally three two-parameter families can
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Fig. 5. Plot of the p-p bubble for k = (κ, κ), parallel to the
square Fermi surface and Λ = 0.01.

intersect in scatterings between the two saddle points as
gBCS(P1,P2) = gd(P1,P2) = gx(P1,P2).

Due to exact nesting, ξp+Q = −ξp, the non inter-
acting model has particle-hole symmetry. We further as-
sume that the interaction also respects this symmetry (see
Sect. 7). The self energy then satisfies the exact relation
ΣΛ(p0,p) = −ΣΛ(−p0,p + Q), and therefore vanishes on
the Fermi surface (p0 = ξp = 0). This means that the
Fermi surface is not modified by self-energy effects.

For the corrections to the single particle dispersion and
the quasi particle weight, one can derive similar relations
as in equation (35), namely

∂p0ΣΛ(p) < const. g2
Λ0

log3 Λ (36)

∇pΣΛ(p) < const. g2
Λ0

log3 Λ · ∇pξp.

These corrections are negligible within our approximation,
where gΛ0 log2 Λ ∼ 1 in the spirit of the parquet approxi-
mation (see Sect. 3.3).

We now investigate the one-loop corrections to the cou-
pling constants by an analysis of the bubbles (30). As a
consequence of the particle-hole symmetry, the p-p and
p-h bubbles are related by

Bpp(Λ,k) = −Bph(Λ,k + Q). (37)

Both the p-p and p-h bubbles are of order Λ−1 when-
ever k = n(π, π) + κ(1,±1) (n ∈ Z, κ ∈ R). It follows
that the three parameter coupling function g‖ is renor-
malized by contributions of order Λ−1 from every diagram
PP, PH1 and PH2 in equation (19). The reason is that the
Fermi surface consists of straight lines. Namely if k is par-
allel to such a line, ξp and ξp+k are both small for many
values of p, which gives rise to a big value of the integral
in equation (30). In Figure 5 we show a plot of Bpp(Λ,k)
for k = (κ, κ). For κ� 1, Bpp(Λ,k) is well approximated
by 1

2π2Λ log 16
Λ+4κ .

Due to this big variety of contributions of order Λ−1,
the flow to that order appears to be too complicated

for analytical treatment. Numerical treatments have been
presented by Zanchi and Schulz [23] and more recently by
Halboth and Metzner [24]. A parquet solution for a flat
Fermi surface has been given by Zheleznyak, Yakovenko
and Dzyaloshinskii [15].

By restricting ourselves to the logarithmically domi-
nant terms of order Λ−1 logΛ we can go a long way using
an analytical approach, as will be shown now. We con-
sider the two-parameter coupling functions gBCS, gx and
gd. gBCS gets a dominant contribution (∼Bpp(Λ, 0)) from
the diagram PP, gx from PH1 and gd from PH2. For ex-
ample we have

d
dΛ

gBCS(k,k′) = PP + PH1 + PH2,

where PP ∼ Bpp(Λ, 0) ∼ Λ−1 log(1/Λ), PH1 ∼ Bph(Λ,k+
k′) and PH2 ∼ Bph(Λ,k− k′). We may neglect PH1 and
PH2 for small values of the cutoff, except when k±k′ ≈ Q.
Similarly, for generic k and k′, gx(k,k′) is renormalized
only by the diagram PH1 and gd(k,k′) only by PH2. The
flow equations (19) are again local in Λ and they decouple
into three independent identical equations for the func-
tions gBCS, gs = −gx and gc = 2gd − gx. They read

2Λ
d

dΛ
g�(k,k′) =

1
V

∑
p

δ(|ξp| − Λ) g�(k,p)g�(p,k′),

(38)
where � stands for BCS, s or c. This is evident for gBCS and
gs since only one diagram is involved in their renormaliza-
tion. The PH2 contribution to gd on the other hand con-
sists of three terms (the three PH2 diagrams) involving gd
and gx. We see with amazement that the special combi-
nation gc = 2gd − gx satisfies the same closed and simple
equation as gBCS and gs. It was shown in Section 3.2 that
gBCS is related to pairing, gs to spin instabilities and gc

to charge instabilities.
In the integration over p in equation (38) a

large contribution comes from a small neighbor-
hood of the saddle-points, due to the diverging den-
sity of states. To identify the logarithmically di-
verging contribution to equation (38) we consider
patches P1 = {p ; |px − π|+ |py| < 2ρ} and P2 =
{p ; |px|+ |py − π| < 2ρ} of a size ρ � π/2 around
the two van Hove points and separate the integral

∑
p

into
∑

p∈P1
+
∑

p∈P2
+
∑

p∈B.Z.−P1−P2
, where B.Z. is the

whole Brillouin zone (see Fig. 6). We compute the weight
of the patch and of the remaining part of the Brillouin
zone, assuming that g�(k,p) is of the same order of mag-
nitude for every value of p. Comparing the values

1
V

∑
p∈P1

δ(|ξp| − Λ) =
1

2π2
log(

4ρ2

Λ
), (39)

1
V

∑
p∈B.Z.−P1−P2

δ(|ξp| − Λ) =
1
π2

log(
4
ρ2

), (40)

we conclude that the patch contribution dominates the
remaining part if Λ � ρ4. Under the hypothesis that the
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0

P2

P2

P1 P1

Fig. 6. The Brillouin zone with the energy shell |ξp| = Λ. It is
separated into two patches P1 and P2 and the remaining part.

functions g�(k,k′) are slowly varying, it is then consistent
to replace equation (38) by

d
dl
g�(k,k′) = −

∑
i=1,2

g�i (k)g�i (k′), (41)

where we have set g�(k,p) ≈ g�i (k) for p ∈ Pi and
l = 1

8π2 log2(4ρ2

Λ ) as the new RG parameter. Correspond-
ingly, setting g�i (k′) ≈ g�ij for k′ ∈ Pj in (41) leads to

d
dl
g�j (k) = −

∑
i=1,2

g�i (k) g�ij . (42)

We are now left with the problem of renormalizing
the couplings g�ij , which describe scattering of particles
near the saddle points. Equation (38) cannot be used here
because it is not valid for k ± k′ ≈ Q, i.e. if k ∈ P1 and
k′ ∈ P2. The RG flow of the couplings g�ij will be discussed
in detail in Section 6.

Once the evolution of the g�ij as a function of l is
known, one can integrate equations (42, 41). Introducing
g�±(k) = g�1(k)± g�2(k) we get

g�±(k) = g�±(k)
∣∣
l=l0

exp

[
−
∫ l

l0

dl (g�11 ± g�12)

]
(43)

and

g�(k,k′) = g�(k,k′)|l=l0

−1
2

∫ l

l0

dl
[
g�+(k)g�+(k′) + g�−(k)g�−(k′)

]
. (44)

We will see that the RG equations of g�ij as a function
of l yield diverging solutions at a finite value l = lc. Near
this critical value they behave asymptotically like

g�ij(l) ≈
g̃�ij
lc − l

+O(lc − l)α, (45)

where the constant g̃�ij can be determined from the RG
equation and α > −1. Equations (43, 44) then give

g�±(k) ≈ A± g�±(k)
∣∣
l=l0

[
(lc − l)g̃

�
± +O(lc − l)g̃

�
±+α+1

]
(46)

and

g�(k,k′) ≈ g�(k,k′)|l=l0 −
∑
ν=±

Bν g
�
ν(k)g�ν(k′)|l=l0

×
[
(lc − l)2g̃�ν+1 +O(lc − l)Min{0,2g̃�ν+α+2}

]
, (47)

where g̃�± := g̃�11± g̃�12 and A±, B± are positive constants.
The coupling function g�(k,k′) is diverging if g̃�+ or g̃�− ≤
−1/2.

The functions g�+(k) have s-wave symmetry, i.e. they
respect all the point symmetries of the square lattice. On
the other hand we see that g�−(k) is of the dx2−y2-wave
type [g�−(kx, ky) = g�−(kx,−ky) = −g�−(ky, kx)]. Thus the
diverging part of the coupling function has s or dx2−y2-
wave symmetry.

In the preceding calculation we have distinguished
strictly between points far from the saddle points and
those close to the saddle points. The scale which dis-
tinguishes between “far” and “close” is the patch size ρ,
which was introduced by hand.

The behavior of the overall coupling function g�(k,k′)
near the critical point depends on the smallest (i.e. the
most negative) value of the constants g̃�±. In Section 6.2 we
will show that Min{g̃�±} = −1. In this situation the func-
tion g�(k,k′) diverges everywhere with the same power
(l − lc)−1 and g�(k,k′) remains a smooth function upon
renormalization even if k or k′ (or both) approach the
saddle points. This justifies a posteriori the estimation of
the diagrams (28) by the bubbles (29) as well as the ap-
proximations of equations (41, 42), namely that g�(k,k′)
approaches continuously g�i (k) as k′ → Pi and g�i (k)
approaches g�ij as k → Pj . If instead we would find
0 > Min{g̃�±} > −1, the scattering of particles near the
van Hove points would diverge more rapidly than that
of particles at the remaining Fermi surface. This would
mean that different regions in the Brillouin zone behave
differently. The region around the saddle points would be-
come strongly interacting while the remaining Fermi sur-
face would remain weakly interacting.

In order to calculate the susceptibilities we consider
equations (23, 27). The non-locality in the variable Λ of
equation (27) disappears because of exact nesting (ξp+Q =
−ξp). In the low energy regime Λ → 0, we assume that
the frequency dependence of R is not important and re-
place R(k) by R(k). We can then explicitly perform the
frequency integral to obtain identical equations for the
charge, spin and pairing susceptibilities

2Λ
d

dΛ
χ� = − 1

V

∑
k

δ(|ξk| − Λ) |R�(k)|2,

2Λ
d

dΛ
R�(k) =

1
V

∑
p

δ(|ξp| − Λ) g�(k,p)R�(p), (48)
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where � = c, s,BCS. To simplify the notation we have
omitted the index Λ in the symbols χ, R and g.

We treat equation (48) in the same way as equa-
tion (38), i.e. we take the leading contribution from the
patches P1, P2 around the two saddle points and assume
R�(p) ≈ R�i for p ∈ Pi. We get

d
dl
χ�± =

1
2
|R�±|2,

d
dl
R�± = −g�±R�±, (49)

where R�± := R�1 ± R�2 and χ� =: χ�+ + χ�−. If g�± is di-
verging asymptotically like g̃�±/(lc − l) and if g̃�± < −1/2,
the corresponding susceptibility diverges with a critical
exponent 2g̃�± + 1:

χ�± ∼ (lc − l)2g̃�±+1 ∼ (Λ− Λc)2g̃�±+1. (50)

On the other hand g̃�± ≥ −1/2 leads to a finite value of
the susceptibility.

We thus naturally identify six possible instabilities. In
each of the charge, spin or pairing sectors the form factor
can be either even or odd under the exchange of the two
van Hove points (i.e. R1 = R2 or R1 = −R2). In the pair-
ing sector χBCS

+ clearly corresponds to s-wave supercon-
ductivity (sSC) and χBCS

− to dx2−y2-wave superconductiv-
ity (dSC). The charge and spin density waves are related
to the susceptibilities χc

+ and χs
+, respectively. The two

remaining susceptibilities χc,s
− correspond to a form factor

with dx2−y2-wave symmetry in the charge and spin sec-
tors. They describe the tendency towards the formation
of charge or spin flux phases (see Sect. 3.2).

These six instabilities of a system with two van Hove
singularities have been discussed long ago by Schulz [42].
Here we have shown that they appear naturally in the very
weak coupling limit of Wilson’s renormalization group.

6 Flow of the couplings between saddle points

We now return to the renormalization of coupling con-
stants for scattering processes both within and between
saddle point patches. We consider the nearest-neighbor
tight-binding model (t′ = 0) as in Section 5. The most
simple assumption is to treat the saddle points in close
analogy to the Fermi points of a one-dimensional system
where there are just four types of scattering processes,
one restricted to the region of a single Fermi point, the
other three involving both right and left movers (forward,
backward and Umklapp scattering). This one-dimensional
scenario with four coupling constants g1, . . . , g4 implicitly
assumes that the more detailed wave vector dependence in
this region is irrelevant. While this appears to be true for
one-dimensional Fermi systems, where going away from a
Fermi point means leaving the Fermi surface, we will ar-
gue that in the present case the functional dependence of
the couplings is relevant in the neighborhood of the saddle
points.

6.1 “One-dimensional” solution

In an early contribution to this subject Schulz [17] as-
sumed that the coupling function g(k1, . . . ,k4) takes
only four different values according to how the momenta
k1, . . . ,k4 are distributed over the two patches, namely

g(k1, . . . ,k4) ≡


g1 ; k1,k3 ∈ P1 and k2,k4 ∈ P2

g2 ; k1,k4 ∈ P1 and k2,k3 ∈ P2

g3 ; k1,k2 ∈ P1 and k3,k4 ∈ P2

g4 ; k1, . . . ,k4 ∈ P1

.

(51)
Note that we have interchanged g2 and g4 as compared
to reference [17]. The parameters g�± = g�11 ± g�12, which
control the various instabilities (� = s, c,BCS), are readily
expressed in terms of the coupling constants g1, . . . , g4,

SDW/SF: gs± = −g2 ∓ g3

CDW/CF: gc± = 2g1 − g2 ± g3

sSC/dSC: gBCS
± = g4 ± g3. (52)

g1 has to be renormalized by the diagrams PH2, be-
cause the direct momentum transfer k3−k2 is close to the
nesting vector Q, but the other contributions coming from
PH1 and PP are negligible. Similarly g2 is renormalized
only by PH1 and g4 by PP. The remaining coupling g3 on
the other hand gets leading contributions from all three
channels, PP, PH1 and PH2.

The RG equation is obtained by locating the external
momenta k1, . . . ,k4 in equation (19) exactly at the saddle
points P1 and P2 and restricting the sum over p to the
two patches P1, P2. The result is

d
dl
g1 = 2g1(g2 − g1)

d
dl
g2 = g2

2 + g2
3

d
dl
g3 = 2g3(2g2 − g1 − g4)

d
dl
g4 = −g2

3 − g2
4. (53)

For most initial conditions the numerical solution
of these equations diverge asymptotically like in equa-
tion (45) with coefficients g̃i satisfying

g̃1 = 2g̃1(g̃2 − g̃1)
g̃2 = g̃2

2 + g̃2
3

g̃3 = 2g̃3(2g̃2 − g̃1 − g̃4)
g̃4 = −g̃2

3 − g̃2
4. (54)

Equation (54) has many solutions, but the ones which are
relevant for the divergences of equation (53) are g̃1 = 0,
g̃2 = −g̃4 = 1/6 and g̃3 = ±

√
5/6, depending on whether

the initial value of g3 is positive or negative (note that g3

cannot change its sign). The special feature of these two
solutions is that in view of equations (50, 52) three out of
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the six dominant susceptibilities are diverging with the
same critical exponent. Namely

χSDW ∼ χdSC ∼ χCF ∼ (Λ− Λc)−γ if g3 > 0,
χCDW ∼ χsSC ∼ χSF ∼ (Λ− Λc)−γ if g3 < 0, (55)

where γ = (
√

5− 2)/3 ≈ 0.08. The divergence of the sus-
ceptibilities is thus weak compared to the mean field be-
havior χ ∼ (T − Tc)−1.

However, for some initial conditions the solutions of
equation (53) are not diverging but flow towards the triv-
ial fixed point g1 = g2 = g3 = g4 = 0. This means that
the RG flow of the couplings between the two saddle point
patches does not develop an instability. In this case the re-
striction to the saddle-point patches is clearly insufficient
and the low energy behavior is controlled by the remaining
part of the Fermi surface.

6.2 Towards functional renormalization

The hypothesis of constant couplings g1, . . . , g4 neglects
the fact that in reality all these parameters are functions
of incoming and outgoing momenta k1, . . . ,k4, three of
which can move freely on the Fermi surface within the
saddle point patches. Unfortunately, a true functional
renormalization is presently beyond the reach of an ana-
lytical approach. Therefore we mimic the true momentum
dependence by introducing, in addition to the constants
g1, . . . , g4 representing general values of the momenta (in
the patches), other couplings corresponding to specific
combinations of momenta. Thus we allow g3(k1, . . . ,k4)
to take four different values:

g3(k1, . . . ,k4)≈



gBCS
3 if k1 + k2 = 0

gx3 if k3 − k1 = Q

gd3 if k3 − k2 = Q

g3 if |k3 − k2−Q|, |k3 − k1 −Q|,
|k1 + k2| > O(

√
Λ).

(56)
Similarly, g1(k1, . . . ,k4) takes the values gd1 or g1,
g2(k1, . . . ,k4) = gx2 or g2 and g4(k1, . . . ,k4) = gBCS

4 or g4.
We thus separate the couplings gBCS

3 , gBCS
4 with zero total

momentum, gd1 , gd3 with a direct momentum transfer equal
to Q and gx2 , g

x
3 with an exchanged momentum transfer

of Q from the general ones (g1, . . . , g4), where none of
these special relations among the in- and outgoing mo-
menta applies2. In the transition domain (where for ex-
ample 0 < |k1 + k2| <

√
Λ) the function is unknown, but,

as we will argue shortly, its knowledge is not essential.
This parameterization of the coupling functions is a

natural choice given the structure of the one-loop RG
equations (19) because the special couplings gBCS, gx

2 The special couplings are related to the couplings g�ij intro-

duced in Section 5 by gc
11 = 2gd1−gx2 , gs

11 = −gx2 , gBCS
11 = gBCS

4 ,
gc

12 = 2gd3 − gx3 , gs
12 = −gx3 , gBCS

12 = gBCS
3 .

 p  −p

 k’  −k’

kk −k

 k’

kk −k’

 −k

 p  p−k−k’PP: PH1:

Fig. 7. Two diagrams involved in equation (57). k and k′ are
typical vectors belonging to the patch P1 and P2, respectively;
p is the integration variable

and gd get the strongest contributions from the PP, PH1
and PH2 diagrams, respectively. We say that gBCS is res-
onant in the PP channel, gx in the PH1 channel and gd

in the PH2 channel. Furthermore the diagram with the
largest contribution, say PP for a BCS coupling, again
only includes BCS couplings and does not mix with non-
BCS processes.

For example, let k ∈ P1 and k′ ∈ P2 such that
g(k,−k,−k′,k′) ≈ gBCS

3 and consider the RG equation
for this process:

d
dΛ

gBCS
3 = PP + PH1 + PH2. (57)

The dominant diagram PP, shown in Figure 7, involves
the couplings gBCS(k,p) and gBCS(p,k′). Within our
approximation they are replaced by the constants gBCS

3
or gBCS

4 , respectively. The contribution from diagram PP
to equation (57) becomes

PP = 2BPpp(Λ,0) gBCS
3 gBCS

4 , (58)

where BPpp(Λ,k) is the p-p bubble restricted to a saddle
point patch of size ρ, given by equation (33) for t′ = 0.

By contrast, the non-resonant diagram PH1 (also
shown in Fig. 7) involves couplings like g(k,p − k −
k′,−k′,p) which for almost every value of p do not
satisfy one of the special relations k1 + k2 = O(

√
Λ),

k3 − k2 = Q + O(
√
Λ) or k3 − k1 = Q + O(

√
Λ). This

diagram therefore includes only the general couplings g2

and g3 and no special couplings gBCS, gd or gx. Thus

PH1 = 2BPph(Λ,k + k′) g2g3, (59)

where BPph(Λ,k) = −BPpp(Λ,k − Q). It follows that the
RG flow depends on the ratio BPph(Λ,k + k′)/BPpp(Λ,0).
In order to obtain a closed set of equations we replace this
ratio by a constant.

Let us first define

α(Λ,k + k′) :=
BPpp(Λ,k + k′ −Q)

BPpp(Λ,0)
(60)

which varies in principle between 0 and 1. Its value is 1
if k + k′ = Q, i.e. if the process to be renormalized is
at the same time a gBCS and a gx. Such processes exist
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of course, but they will not influence the RG equations
in a relevant way. According to equation (39) a region in
the Brillouin zone of width ∼

√
Λ or smaller can be safely

ignored within logarithmic precision. We thus assume that
k+k′−Q ∼

√
Λ or bigger. The biggest values are obtained

if k+k′ is parallel to the Fermi surface k+k′−Q = (κ, κ).
For κ ≥

√
Λ we get from equation (33)

α(Λ,k + k′) ≤
log 4ρ2

Λ+2ρ
√
Λ

log 4ρ2

Λ

Λ�ρ2

−−−−−→ 1
2
· (61)

In the following we replace α(Λ,k + k′) by a constant
α ≤ 1/2. All the nearly resonant diagrams are treated in
the same way, i.e. they include general couplings g1, . . . g4

only and their amplitude is reduced with respect to the
resonant ones by a factor α ≤ 1/2.

Our approximation scheme leads to a set of RG equa-
tions for the special couplings gd1 , g

x
2 , g

BCS
3 , gd3 , g

x
3 , g

BCS
4

d
dl
gd1 = 2gd1(gx2 − gd1) + 2gd3(gx3 − gd3)

d
dl
gx2 = (gx2 )2 + (gx3 )2

d
dl
gBCS

3 = −2gBCS
3 gBCS

4 + 2αg3(2g2 − g1)

d
dl
gx3 = 2gx2g

x
3 + 2αg3(g2 − g1 − g4) (62)

d
dl
gd3 = 2(−2gd1g

d
3 + gx2g

d
3 + gd1g

x
3 ) + 2αg3(g2 − g4)

d
dl
gBCS

4 = −
(
gBCS

3

)2 − (gBCS
4

)2
.

The general couplings g1, . . . , g4 are resonant in none
of the three channels. The RG flow of g1, . . . , g4 is thus
given by equations (53), with the right hand side multi-
plied by α.

Equations (62) can be rewritten in terms of the
couplings which are associated with the dominant insta-
bilities gs

± = −gx2 ∓ gx3 , gc
± = 2gd1 − gx2 ± (2gd3 − gx3 ) and

gBCS
± = gBCS

4 ± gBCS
3

d
dl
gs
± = −

(
gs
±
)2 ± 2αg3(g1 − g2 + g4)

d
dl
gc
± = −

(
gc
±
)2 ± 2αg3(g1 + g2 − g4) (63)

d
dl
gBCS
± = −

(
gBCS
±

)2 ± 2αg3(2g2 − g1).

We see that for α = 0 it is a set of six independent
equations, one for each instability. In fact, if the non-
resonant diagrams are completely neglected, the RG be-
comes equivalent to the summation of ladder diagrams
(see Sect. 6.4). Even for 0 < α < 1 the special cou-
plings associated with the different instabilities still do

not influence each other, but each RG equation has a
source term coming from the general couplings g1, . . . , g4.
For α = 1 and initial conditions gd1 = g1, gx2 = g2,
gd3 = gx3 = gBCS

3 = g3, gBCS
4 = g4, equation (53) is re-

covered (since these conditions are then conserved by the
RG flow).

One can search for asymptotic solutions of the form
g(l) = g̃(lc− l)−1 of equation (63) by solving the resulting
algebraic equations for the g̃. We first consider the pos-
sibility of diverging general couplings g1, . . . , g4. In this
case it follows from our analysis of equation (53) that the
asymptotic behavior of the general couplings is given by
g̃1 = 0, g̃2 = −g̃4 = 1/(6α) and g̃3 = ±

√
5/(6α), de-

pending on the sign of g3. By inserting this behavior into
equation (63) it is easily seen that a real solution for g̃s

±, g̃
c
±

and g̃BCS
± requires α ≥

√
80/81 ≈ 0.994. But as we argued

above, the appropriate values of α are ≤ 1/2.
It follows that for acceptable values of α a special cou-

pling can only diverge if g̃1 = . . . = g̃4 = 0. This means
that this special coupling constant diverges at a higher
energy scale than the general couplings.

The most striking difference to the “one-dimensional”
solution is that one of the six couplings g�± can diverge,
while all the others remain finite. This occurs here be-
cause the mixing of the flow for these couplings has been
neglected on the basis of a phase space argument (see the
discussion before Eq. (59)). This argument is certainly
valid as long as the coupling function is slowly varying,
but it may be questioned close to the instability, where
the coupling function gets peaked. It is argued however in
Section 6.4 that the non leading couplings can neverthe-
less stay finite in the case of an instability.

The divergence of the leading coupling is characterized
by g̃�± = −1. Equation (50) then implies the asymptotic
behavior χ ∼ (Λ − Λc)−1, corresponding to a mean field
exponent. In view of equation (47) the coupling function
g�(k,k′) diverges as (Λ−Λc)−1 everywhere on the Fermi
surface and remains a smooth function upon renormaliza-
tion, as anticipated in Section 5.

6.3 Phase diagram

For a circular Fermi surface the dominant instability is
superconductivity, as discussed in Section 4.1. For the
square Fermi surface the flow equations (63) show that
there are several possible instabilities, s- and d-wave
superconductivity, charge and spin density waves, charge
and spin flux phases. The values of the initial couplings
will determine which of these instabilities, if any, occurs
first, i.e. at the largest energy scale. To be specific we
consider an initial interaction consisting of on-site and
nearest-neighbor terms

ĤI = U
∑

r

n̂↑rn̂↓r + V
∑
〈r,r′〉

n̂rn̂r′ + J
∑
〈r,r′〉

Ŝr · Ŝr′ , (64)

where n̂r =
∑
σ n̂σr and Ŝr are the usual charge and spin

operators on the lattice site r, the sum
∑
〈r,r′〉 is over
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4V / U

J / U

-1 1

-1

1

SDW

CDW

Spin Flux
SF

Charge Flux
CFdSC

Fig. 8. The phase diagram for U > 0 and α = 1/2. In the
dotted region all the couplings are flowing to zero. The size
of the dotted region depends on the parameter α, the other
features are α-independent.

nearest neighbor bonds and U , V and J are parameters.
The functional integral formulation of this model is of the
form (3) with a coupling function

g(k1, . . . , k4) = U − (V − J/4)ek3−k2 + J/2 ek3−k1 (65)

where ek = −2(cos kx + cos ky).
The correct initial conditions for the flow equations

would be the effective values of the couplings g1, . . . , g4

at a cutoff Λ0 � ρ4, when the flow enters the asymptotic
regime. It is at present impossible to connect in a
controlled way these effective low energy couplings to
the parameters of the microscopic interaction because
this would imply solving equation (19) without further
expansion in powers of Λ. We therefore take the bare
values of the couplings

g1 = gd1 = U − 4V − J,
g2 = gx2 = U + 4V + J,

g3 = gd3 = gx3 = gBCS
3 = U − 4V + 3J,

g4 = gBCS
4 = U + 4V − 3J (66)

as starting values instead of the (unknown) renormalized
ones. This choice is a good approximation if U , V and J
are small enough so that the couplings vary little before
entering the asymptotic regime.

We have solved equation (63) numerically for these
initial conditions and obtained the phase diagrams of Fig-
ures 8 and 9 for, respectively, positive and negative val-
ues of U . The predicted phase for the repulsive Hubbard
model (U > V = J = 0) is a spin density wave (SDW)
as expected and quite strong nearest neighbor terms are
needed to establish a flux phase or (only for attractive V )
a d-wave superconductor. An unexpected feature of Fig-
ure 8 is, that the SDW can be destabilized by positive
values of J .

4V / |UU||

J / |UU||

-1 1

-1

1

sSC CDW

SF

CF
dSC

Fig. 9. The phase diagram for U < 0 and α = 1/2.

......

==  or

......a)

b)

Fig. 10. The class of diagrams summed in the generalized
RPA: a) particle-particle ladders and b) the particle-hole lad-
ders.

In contrast to the “old” RG equations (53) our more
elaborate scheme equation (62) produces only one diverg-
ing susceptibility while the others remain finite. Only at
the phase boundaries, where the two neighboring phases
are degenerate, both susceptibilities diverge.

In a certain parameter range (the dotted region in
Figs. 8 and 9) all the couplings are flowing to zero. In
this case the behavior is not necessarily dominated by the
saddle points and the RG flow has to be followed to or-
der Λ−1, including self energy corrections.

6.4 A consistency test

The approximation scheme presented in Section 6.2 re-
duces to a generalized random phase approximation
(RPA) for α = 0. This approximation consists of sum-
ming a certain class of diagrams shown in Figure 10.

We have seen that although equation (62) at α > 0
goes beyond the RPA, its solutions are asymptotically the
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same as for α = 0. The reason is that in our approximate
treatment of the non-resonant diagrams only the general
couplings g1, . . . , g4 intervene and not the (diverging) spe-
cial couplings gd1 , gx2 etc. It is not a priori clear whether
this approximation is justified close to Λc.

For example the (non-resonant) contribution of the di-
agram PH1 of Figure 7 to the renormalization of gBCS

3 in-
volves an integration over the coupling function g(k,p −
k − k′,−k′,p), where p is the integration variable mov-
ing along the one dimensional energy shell |ξp| = Λ. It is
an integral over a one dimensional curve in the space of
momenta (k1,k2,k3). For special values of p, the curve
crosses one of the planes specified by equation (56). For
example for p = k′ the coupling is equal to gBCS

3 . The
question is whether one can neglect the contribution close
to this point even when gBCS

3 diverges.
In order to answer this question we have to know the

coupling function for small but finite total momentum.
Within the generalized RPA one obtains

gBCS
± (Λ,q) =

gBCS
± (Λ0)

1 + gBCS
± (Λ0)

∫ Λ0

Λ BPpp(Λ̃,q) dΛ̃
, (67)

where q is the (small) total momentum3 and gBCS
± (Λ0)

is the (q-independent) initial value. Equation (67) can be
obtained either by solving the RG equation (63) for α = 0
or by explicitly summing the ladder diagrams shown in
Fig. 10a). A similar expression is obtained for gs = −gx
and gc = 2gd − gx as functions of the deviation of the
momentum transfer from Q = (π, π).

For negative values of gBCS
± (Λ0) the effective coupling

diverges at a critical scale Λc. For Λ > Λc, gBCS
± (Λ,q) has

a maximum at q = 0, which diverges for Λ→ Λc.
We have estimated the contribution of the peak in

gBCS
± (Λ,q) to the non-resonant diagram by integrating

this function over a curve in q-space. We find that such
an integral diverges at most like log (Λ− Λc) and there-
fore is negligible compared to the resonant diagrams ∼
(Λ− Λc)−2. We conclude that the approximation pre-
sented in Section 6.2, namely evaluating the non-resonant
diagrams with the constant general values g1, . . . , g4, is
consistent.

The weak divergence of the non resonant diagrams are
also consistent with the fact stated in Section 6.2, that non
leading couplings and susceptibilities remain finite at Λc,
since

∫ Λc

Λ0
dΛ log(Λ − Λc) < ∞. Note that this behavior

can only be obtained because the momenta are allowed
to move continuously on the Fermi surface. If instead we
would discretize the Fermi surface and replace the con-
tinuous coupling function by a finite set of constants, a
divergence of one coupling gc at a scale Λc would imply
the divergence, at the same scale Λc, of all these couplings
that have gc appearing in the right hand side of the RG
equation.

Recently, the discretized RG has been studied in de-
tail for a simpler model without van Hove singularities
and without Umklapp scattering [43]. It was found that

3 q = p− k′ in the example of Section 6.2.

there is a factor 1/N between the biggest non-dominant
couplings and the dominant ones, where N is the number
of patches. This is consistent with our result in the con-
tinuous case (N →∞), that non-dominant couplings stay
finite at Λc while the dominant couplings diverge. Similar
results were also found in the large-N limit of half-filled
N -leg ladders [44].

7 Special symmetries

We will now discuss the phase diagram at half filling
(Figs. 8 and 9) in terms of special symmetries which turn
out to be present on the lines separating two different
phases. For that purpose it is convenient to write the
model in the Hamiltonian formalism

Ĥ = Ĥ0 + ĤI − Ĥ ′ (68)

with
Ĥ0 =

∑
σ,k

ξkn̂σk,

ĤI =
1
2

1
V

∑
k1···k4

δk1+k2,k3−k4

×g(k1,k2,k3,k4)
∑
σ,σ′

ĉ†σk1
ĉ†σ′k2

ĉσ′k3 ĉσk4

and

Ĥ ′ =
1
2

∑
σ,k

(
1
V

∑
p

(
2gf(k,p)− ge(k,p)

))
n̂σk.

The Hartree-Fock term Ĥ ′ has been included in order to
keep Ĥ particle-hole symmetric (i.e. invariant with respect
to the canonical transformation ĉσk → ĉ†σk+Q).

The symmetry group of the noninteracting Hamilto-
nian Ĥ0 is extremely large. From any function dk we can
build an operator Nd = 1/2

∑
σ,k dk n̂σk that commutes

with Ĥ0 and thus generates a continuous group of sym-
metry transformations exp(iαNd). We find that Nd com-
mutes with the complete Hamiltonian Ĥ if and only if

(dk1 + dk2 − dk3 − dk4) g(k1, . . . ,k4) = 0 ∀ k1, . . .k4.
(69)

If d is a suitably chosen d-wave function, such a sym-
metry can relate s- and d-wave superconducting order
parameters by [Nd, ÔsSC] = −ÔdSC and [Nd, ÔdSC] =
−ÔsSC. In this situation on can transform OsSC into OdSC

and vice versa by a symmetry operation. As a conse-
quence the susceptibilities for s- and d-wave supercon-
ductivity must be exactly equal, provided condition (69)
holds. The symmetry Nd relates in a similar way spin-
or charge density waves to the corresponding flux phases.
It might therefore control the transition lines SDW/spin
flux, CDW/charge flux and sSC/dSC.
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Similarly the operators Sd = 1/2
∑
σ,σ′,k dkĉ

†
σk

× τσσ′ ĉσ′k relate the spin density wave to the charge flux
phase and the charge density wave to the spin flux phase.
They commute with Ĥ if the following two conditions hold

(dk1 − dk2 + dk3 − dk4) g(k1, . . . ,k4) = 0 ∀ k1, . . .k4

(dk1 + dk2 − dk3 − dk4) (1−X)g(k1, . . . ,k4) = 0

∀ k1, . . .k4.
(70)

Another symmetry introduced by Lieb [45] and then
further investigated by Yang and Zhang [46] is generated
by the pseudo spin operator ηs =

∑
k sk ĉ↑Q−kĉ↓k,

where the function sk satisfies sQ−k = sk. It turns a
s-wave superconductor into a charge density wave and
a d-wave superconductor into a charge flux phase (and
vice versa). ηs commutes with H0 because of the exact
nesting (ξQ−k + ξk = 0) and it commutes with the full
Hamiltonian provided
∑

p sp g(p, p̄, k̄,k) = sk
∑

p(2−X)g(k,p,p,k) ∀ k

sk1(1−X)g(k1, . . . ,k4)− sk3g(k̄3,k2,k4, k̄1)

+sk4g(k̄4,k2,k3, k̄1) = 0
(71)

∀ k1, . . .k4, where k̄ := Q− k.
Finally Zhang [47] considered the operators Πd =

1/2
∑
σ,σ′,k dk ĉσQ−k (ττy)σσ′ ĉσ′k connecting a spin den-

sity wave to a d-wave superconductor and a spin flux phase
to a s-wave superconductor. The symmetry condition is of
the same form as (71) but with sk1 replaced by a func-
tion dk1 that satisfies dQ−k = −dk.

It is in general difficult to satisfy the conditions (69)
to (71). For example they do not hold for the U − V − J
interaction. The only exception is the pseudo spin symme-
try ηs which is exact for V = 0 and sk = 1. However the
restriction of the model to the two saddle point patches
has more chance of being symmetric. We take sk = 1 ev-
erywhere whereas d(k) = 1 for k ∈ P1 and d(k) = −1 for
k ∈ P2. For this simple choice the symmetry generators
Nd, Sd, ηs andΠd together with the total spin- and charge
operators form a so(6)⊕so(2) Lie algebra. The commuta-
tion relations of the symmetry generators and the relevant
order parameters are listed in reference [48].

We further assume that the (initial) coupling function
g(k1, . . . ,k4) takes only four different values g1, . . . g4 as in
equation (51). The symmetry conditions are then g3 = 0
forNd, g1 = 0 for Sd, g2+g4 = 2g1 for ηs and g2+g4 = 0 for
Πd. These hyper-planes in our four dimensional coupling
space define exactly the transition planes of the phase di-
agram (shown in Figs. 8 and 9 for g1, . . . , g4 parametrized
by U, V and J).

We have thus shown that the transition planes of
the phase diagram are fixed by exact symmetries of the
g1, . . . , g4- model. This is a strong indication that the
phase diagram shown in Figures 8 and 9 is the correct one
at sufficiently weak coupling. Such a determination of an
exact phase diagram by simple symmetry considerations
was also possible for a one-dimensional system [49].

In the more general situation of Section 6.2 with ten in-
stead of four coupling constants the symmetry conditions
read

gd3 = gx3 = gBCS
3 = g3 = 0 for Nd,

g1 = gd1 = gd3 − gx3 = 0 for Sd,

2g1 − g2 − g4 = 2gd1 − gx2 − gBCS
4

= 2gd3 − gx3 − gBCS
3 = 0 for ηs, (72)

g2 + g4 = gx2 + gBCS
4 = gx3 − gBCS

3 = 0 for Πd.

These symmetries are respected by our approximate RG
equation (62) for every value of the parameter α. In fact it
is easy to show that if one of these conditions is satisfied at
the initial scale l0 it remains to be so at any scale l. This
is not completely trivial since an arbitrary approximation
scheme might violate the symmetries of the model.

8 Conclusion

In summary, we have analyzed systematically the instabil-
ities of weakly interacting electrons with a square Fermi
surface. Besides s- and d-wave superconductivity we have
identified commensurate density waves and flux phases
both in the charge and spin sector as the dominant in-
stabilities. The transition lines of the phase diagram are
fixed by exact symmetries and therefore robust for various
approximation schemes.

On a technical level, we have found that the dominant
RG flow of the effective interaction in the limit of small en-
ergies is controlled by scattering processes with momenta
close to van Hove points. Nevertheless, the low energy
effective action contains relevant couplings between elec-
trons everywhere near the Fermi surface. The couplings far
away from the saddle points diverge at the same critical
energy and with the same power ∼ (Λ−Λc)−1 as the cou-
plings at the saddle points. From this point of view, there
is no sign of a scenario with strong effective couplings at
the saddle points and weak couplings on the remaining
Fermi surface.

We have shown that the RG equations, although
strongly coupled at the initial stage, become decoupled in
the asymptotic limit of small energies. Thus the asymp-
totic result turns out to be similar to that of a general-
ized random phase approximation (RPA). The decoupling
arises because the effective coupling function is strongly
enhanced only for special configurations of the external
momenta, i.e. in a small region of k-space. Thus the RG
flow generates long ranged interactions in real space.

By contrast, in one dimension superconducting and
density wave instabilities remain coupled. The low en-
ergy excitations of a one-dimensional electron gas are con-
strained to two privileged points in k-space: the Fermi
points. This special geometry allows for a strong mix-
ing between the various interaction channels. The saddle
points of the two-dimensional dispersion have a different
status. They are privileged only due to the diverging den-
sity of states, but the low energy excitations exist on the
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whole Fermi surface. Therefore typical external momen-
tum configurations of an effective interaction are resonant
in at most one channel.

Our analysis has further shown that a discretization of
the Fermi surface in terms of a finite number of patches
can enhance artificially the coupling between the different
scattering channels in the low energy regime. In fact, in the
numerical studies [23,24,26] different susceptibilities are
found to diverge at a single energy scale. By contrast, our
results show that only the susceptibility of the dominant
instability diverges. This behavior has been referred to as
the “moving pole solution” by the Russian school [50].

The decoupling of the RG equations admittedly has
only been established to leading logarithmic order in the
energy cutoff Λ. This is justified for weak bare couplings
for the square Fermi surface. Subleading contributions
have to be taken into account if the Fermi surface is not
nested at the van Hove filling or if the (bare) interaction
is not small enough.

In order to estimate how small the bare interaction
must be, we recall that our approach requires a patch
around the saddle point small compared to the size of the
Brillouin zone (ρ� π/2). On the other hand, the density
of states of this patch has to be big compared to the re-
maining part of the Brillouin zone (in view of Eqs. (39)
and (40) this means log 4/ρ2 � log 4ρ2/Λ). The bare in-
teraction gΛ0 ∼ U must be small enough such that

2U
∫

dΛBPpp(Λ,0) ≈ U

4π2
log2 4ρ2

Λ
∼ 1.

(The factor 2 appears because there are two saddle point
patches in the Brillouin zone.) If for each of the two “�”
signs above, a factor of 10 is introduced, this amounts to
U ∼ 0.02 t. A less stringent factor of 3 for each of the two
inequalities would correspond to U ∼ 0.6 t.
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in Jussieu (Paris) for their hospitality and Manfred Salmhofer
for a useful information. This work has been carried out in the
framework of a “cotutelle de thèse” between the universities of
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